Extra Problems on Vector Calculus

Charles Martin

October 28, 2009

Note: Problems marked with \star are more difficult. Try the easier ones first.

1. Write in spherical coordinates: $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right.$ and $\left.x, y, z \leq 0\right\}$. Integrate x over this region.
2. The plane $y=z$ slices the cylinder $x^{2}+y^{2}=4$. Parametrize the resulting curve.
3. Let S be the unit sphere centered at the origin, with unit normal directed outward. Set $\vec{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Find the flux of \vec{F} across S in three ways:
(a) Directly.
(b) Geometrically.
(c) Using the Divergence Theorem.
4. Write in cylindrical coordinates: $\left\{(x, y, z): x^{2}+y^{2} \leq 1\right.$ and $\left.x^{2}+z^{2} \leq 1\right\}$. Find the volume of the solid.
5. Evaluate $\iiint_{\mathbb{R}^{3}} \frac{d V}{\left[1+\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}\right]^{3 / 2}}$.
6. The electrostatic field is a vector field \vec{E} which, among other things, satisfies $\nabla \times \vec{E}=0$ everywhere. Given a closed curve C is space, evaluate the line integral of \vec{E} along C either using the fundamental theorem of line integrals or Stokes's theorem.
7. A uniform fluid flow is directed vertically (say, heavy rain) and is given by the vector field $\vec{F}=(0,0,-1)$. Find the flux through the cone given by $z=\sqrt{x^{2}+y^{2}}$, where $0 \leq z \leq 1$ and the normal is directed downward.
8. Let R be the volume in space which inside the cylinder $x^{2}+y^{2}=4$, outside the cylinder $x^{2}+y^{2}=1$, and between the planes $z=0$ and $z=4$. Set $\vec{F}=\left(x+y z, y+x^{2} z^{3}, x y z\right)$ and compute the flux out of R.
9. Symmetry arguments: Let B be the unit ball centered at the origin in space and S denote the top $(z \geq 0)$ half of the boundary, oriented upwards.
(a) What is the flux of $\mathbf{i}+2 \mathbf{j}$ across S ?
(b) Integrate $f(x, y, z)=x y$ over B.
(c) Integrate $f(x, y, z)=2 x+3$ over S.
10. \star Find the average distance of an arbitrary point of the unit ball (in \mathbb{R}^{3}) to the north pole.
11. \star Find the volume of the region which is inside all three cylinders: $x^{2}+y^{2} \leq 1, x^{2}+z^{2} \leq 1$, and $y^{2}+z^{2} \leq 1$.
12. \star For every product rule of derivatives there is a corresponding integration by parts. Let $R>0$ and B be the ball of radius R centered at the origin in \mathbb{R}^{3}.
(a) Begin with $\nabla \cdot(f \vec{F})=(\nabla f) \cdot \vec{F}+f \nabla \cdot \vec{F}$ and show

$$
\iiint_{B} f(\nabla \cdot \vec{F}) d V=\iint_{\partial B} f \vec{F} \cdot d \vec{S}-\iiint_{B}(\nabla f) \cdot \vec{F} d V
$$

(b) Let $\vec{\rho}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Evaluate

$$
\iiint_{B} e^{-\rho} \nabla \cdot\left(\frac{\vec{\rho}}{\rho^{3}}\right) d V
$$

The integral cannot be done directly without knowledge of the Dirac δ 'function'.

